

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Projekt 2

Department Fahrzeugtechnik und Flugzeugbau

Der Umkehr-Bumerang - eine theoretische und praktische Untersuchung des Flugverhaltens

Verfasser: Monika Sarbajna Mathias Simon

Prüfer: Prof. Dr. Hartmut Zingel

Abgabedatum: 24.03.2006

Hochschule für Angewandte Wissenschaften Hamburg Studiendepartment Fahrzeugtechnik + Flugzeugbau Berliner Tor 9 20099 Hamburg

Verfasser: Monika Sarbajna Mathias Simon Abgabedatum: 24.03.2006 Prüfer: Prof. Dr. Hartmut Zingel

© Dieses Werk ist urheberrechtlich geschützt. Die Vervielfältigung in jeglicher Form, insbesondere zur Förderung des Bumerangsports, ist unter Nennung der Autoren und der Facharbeit ausdrücklich gestattet und erwünscht.

Erklärung

Erklärung der Verfasser

Hiermit erklären wir, dass dieser Pflichtentwurf nach Wahl, erstellt nach der Prüfungs- und Studienordnung von 2002 der Hochschule für Angewandte Wissenschaften Hamburg, eigenständig von uns erarbeitet und verfasst wurde. Nur die angegebenen Quellen und Hilfsmittel wurden dabei von uns benutzt. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angaben der Quellen kenntlich gemacht.

Mathias Simon

Monika Sarbajna

Datum, Unterschrift

Datum, Unterschrift

Danksagungen

Während unserer Projektarbeit haben wir von vielerlei Seiten Hilfe erhalten. Auf diesem Wege möchten wir uns gerne bei diesen Menschen bedanken.

Unser besonderer Dank gilt Prof. Dr. Hartmut Zingel, Dozent für Aerodynamik und Flugmechanik an der Hochschule für Angewandte Wissenschaften, der unser Projekt ins Leben gerufen hat und uns währenddessen gut betreute.

Ebenfalls möchten wir uns recht herzlich bei Frau Monika Riedel und Herrn Harry Tanger bedanken. Als Angestellte im Aerodynamiklabor der Hochschule unterstützten sie uns bei der Vorbereitung und Durchführung unseres Windkanalversuches. Sie haben uns großzügig Ihre Zeit geschenkt und den Windkanalversuch mit produktiver Kritik gefördert.

Herrn Bodo Saß, Angestellter im Physiklabor des Departments Maschinenbau und Produktion, danken wir für die Hilfe bei der Messung des Massenträgheitsmomentes. Er stellte ebenso die benötigten Messinstrumente bereitwillig zur Verfügung.

Für den Feldversuch benötigten wir einen Spannungswandler sowie eine Videokamera, die uns Prof. Dr.-Ing. Dieter Scholz sowie Herr Theilen aus dem Fahrzeuglabor geliehen haben.

Inhaltsverzeichnis

Verzei	chnis der Bilder	7
Verzei	chnis der Tabellen	8
Liste o	ler Symbole	8
1	Theoretische Grundlagen	10
1.1	Einführung	10
1.2	Bautorm	10
1.3	Flugphasen	11
1.3.1	ADWUIT Kreishehr	11
1.3.2	Aredynamik sings Rumaranga	13
1.3.3	Dor Rumorang als Kroisol	13
1.3.4	Der Dumerang als Kreiser Das Flachlegen des Rumerangs	10
1.3.6	Die Autorotation	21
2	Feldversuch	22
2.1	Bumeranadaten	22
2.1.1	Bestimmung der Oberfläche	23
2.1.2	Bestimmung des Massenträgheitsmomentes	24
2.2	Ziele des Feldversuchs	30
2.3	Versuchsaufbau	30
2.4	Durchführung	31
2.5	Auswertung	32
2.5.1	Bestimmung der Translationsgeschwindigkeit	33
2.5.2	Bestimmung der Rotationsgeschwindigkeit	35
3	Windkanalversuch	36
3.1	Ziele des Windkanalversuchs	36
3.2	Versuchsaufbau	36
3.3	Durchfuhrung	42
3.3.1	Ableuf der Messung	42
3.3.Z	Ablauf der Messung	43
0.4 2/1/1	Ausweitung	44
34.1	Lastfaktor n	44
3.4.2 3.4.3	Änderung der Anströmverhältnisse am Bumerang	40 46
4	Reale Wurfbahnen	48
5	Zusammenfassung	51
6	Literaturverzeichnis	52
Anhar	g A Daten des Windkanalversuches	53

Verzeichnis der Bilder

Bild 1.2Handhaltung des BumerangsBild 1.3AbwurfwinkelBild 1.4HorizontwinkelBild 1.5Luv-WinkelBild 1.6GeschwindigkeitsüberlagerungBild 1.7Verteilung der AuftriebskräfteBild 1.8Kräftezerlegung	10 11 11 12 14 14
Bild 1.3AbwurfwinkelBild 1.4HorizontwinkelBild 1.5Luv-WinkelBild 1.6GeschwindigkeitsüberlagerungBild 1.7Verteilung der AuftriebskräfteBild 1.8Kräftezerlegung	11 11 12 14 14
Bild 1.4HorizontwinkelBild 1.5Luv-WinkelBild 1.6GeschwindigkeitsüberlagerungBild 1.7Verteilung der AuftriebskräfteBild 1.8Kräftezerlegung	11 12 14 14
Bild 1.5Luv-WinkelBild 1.6GeschwindigkeitsüberlagerungBild 1.7Verteilung der AuftriebskräfteBild 1.8Kräftezerlegung	12 14 14
Bild 1.6GeschwindigkeitsüberlagerungBild 1.7Verteilung der AuftriebskräfteBild 1.8Kräftezerlegung	14 14
Bild 1.7 Verteilung der Auftriebskräfte Bild 1.8 Kräftezerlegung	14
Bild 1.8 Kräftezerlegung	
	15
Bild 1.9 Präzession des Bumerangs	16
Bild 1.10 Präzessionsbewegung	17
Bild 1.11 Geschwindigkeitskomponenten der Präzession	17
Bild 1.12 Idealisierte Kreisbahn	18
Bild 1.13 Turbulenzen bei der Rotation	19
Bild 1.14 Auftriebsverteilung beim turbulenten Flug	19
Bild 1.15 Autorotation	20
Bild 2.1 Bumerang "Tristar" (von Gorny, 2004)	21
Bild 2.2 Oberflächenmessung durch ein Polar-Planimeter	22
Bild 2.3 Versuchsaufbau Massenträgheitsmoment	23
Bild 2.4 Eichgewicht	24
Bild 2.5 Skizze Eichaewicht	25
Bild 2.6 Skizze Versuchsbumerang	28
Bild 2.7 Mitnahme-Löcher	28
Bild 2.8 Aufbau Feldversuch	29
Bild 2.9 Bumerangflug	31
Bild 2.10 Translationsgeschwindigkeit	32
Bild 2.11 Skizze Versuchsaufbau	33
Bild 2.12 Rotationsgeschwindigkeit	34
Bild 3.1 Bumerang-Einspannung	36
Bild 3.2 Aufbau Windkanalversuch	37
Bild 3.3 Winkelskala	37
Bild 3.4 Betz-Manometer	38
Bild 3.5 Anordnung der Messaufnehmer	39
Bild 3.6 Relatives Koordinatensystem	40
Bild 3.7 Koordinaten-Transformation	41
Bild 3.8 c₄-Werte	45
Bild 3.9 Lastfaktoren	46
Bild 3.10 Turbulenzen der Anströmung	47
Bild 4.1 Gruppe des Nachtversuches	48
Bild 4.2 Wurf 1	49
Bild 4.3 Wurf 2	50
Bild 4.4 Wurf 3	50
Bild 4.5 Wurf 4	E0

Bilder ohne Quellenangabe sind eigene Bilder.

Verzeichnis der Tabellen

Tabelle: 2-1	Messdaten Massenträgheitsmoment	27
Tabelle: 3-1	c _A -Werte	45
Tabelle: 3-2	Lastfaktoren	46

Liste der Symbole

а	Flügellänge
a	Abstand des Loches zum Schwerpunkt
CA	Auftriebsbeiwert
Cw	Widerstandsbeiwert
D	Direktionsmoment
D _{Dr}	Direktionsmoment des Drehtisches
d _{FL}	Distanz Fokusebene zur Leinwand
d _{KL}	Distanz Kamera zur Leinwand
F	Kraft
F ₁	Kraftkomponente 1
F ₂	Kraftkomponente 2
F _A	Auftriebskraft
F _P	Kraft am Punkt P
F _P ,	Kraft am Punkt P'
Fq	Kraft am Punkt Q
F _Q [']	Kraft am Punkt Q'
F _{res}	resultierende Auftriebskraft
Fw	Widerstandskraft
h _G	Höhe des Eichgewichtes
J	Trägheitsmoment
J _B	Trägheitsmoment des Bumerangs
J _{Bges}	Gesamtes Trägheitsmoment des Bumerangs
J _{BLoch}	Trägheitsmoment der Löcher
J _{Dr}	Trägheitsmoment des Drehtisches
J_{G}	Trägheitsmoment des Eichgewichtes
l	Länge einer Strecke; hier Messbereich auf der Leinwand
I _{Bild}	Länge des Messbereichs auf der Abbildung
Μ	Moment
m	Masse
n	Drehzahl
n	Lastfaktor
N	Anzahl N der ganzen Umdrehungen
Р	Punkt
P'	Punkt
P ₁	Punkt
P ₂	Punkt
p∞	statischer Druck
p _{ges}	Gesamtdruck
Q	Punkt
Q'	Punkt

q∞	Staudruck
R	spezifische Gaskonstante
r _G	Radius des Eichgewichtes
rL	Radius des Loches
r _{Stange}	Radius der Stange
S	Länge der Messstrecke
S	Flügelfläche
S _{Bild}	Länge der Messstrecke auf der Abbildung
Skor	korrigierte Messstrecke
Т	Temperatur in Kelvin
Т	Periodendauer
T _{Dr}	Periodendauer des Drehtellers
T _{Dr,M}	Mittelwert der Periodendauer des Drehtellers
T _B	Periodendauer des Bumerangs und des Drehtisches
T _{B,M}	Mittelwert der Periodendauer des Bumerangs und des Drehtisches
T _G	Periodendauer des Drehtellers und des Eichgewichtes
$T_{G,M}$	Mittelwert der Periodendauer des Drehtellers und des Eichgewichtes
V	Anströmgeschwindigkeit
V	Volumen
VK	Kippgeschwindigkeit
VR	Rotationsgeschwindigkeit
V _{res}	resultierenden Geschwindigkeit
VS	Sinkgeschwindigkeit
VT	Translationsgeschwindigkeit

Griechische Symbole

α	Anstellwinkel
$\Delta\delta_{14}$	Winkeldifferenz mit Indize 1 bis 4
$\Delta \delta_{\text{ges}}$	gesamte Winkeldifferenz
Δt	Zeitdifferenz; hier Messzeit
γ	Horizontwinkel
φ	Auslenkung in Grad
θ	Temperatur in °Celsius
λ	Luv-Winkel
ρ	Dichte
ρ _B	Dichte des Bumerangs
ρ _G	Dichte des Eichgewichtes
ρ_{Luft}	Dichte der Luft
ρ _{Wasser}	Dichte des Wassers
ψ	Abwurfwinkel
ω	Rotationsgeschwindigkeit
ω _P	Präzessionsgeschwindigkeit

1 Theoretische Grundlagen

1.1 Einführung

"War einmal ein Bumerang; War ein Weniges zu lang. Bumerang flog ein Stück, Aber kam nicht mehr zurück. Publikum – noch stundenlang – Wartete auf Bumerang."

(Ringelnatz 1964, Seite 48)

Wer schon mal den Flug eines Bumerangs beobachten konnte, den lässt dieses Phänomen wahrscheinlich nicht mehr los. Der weggeworfene Bumerang fliegt eine Kreisbahn und kommt zum Werfer zurück. Diese geheimnisvolle Rückkehr fasziniert jedes Mal aufs Neue. Der Bumerang ist das einzige Wurfgerät, das eine so große Entfernung zurücklegen kann und dann auch noch selbstständig zurückkehrt.

1.2 Bauform

Ein entscheidender Faktor, ob ein Bumerang zurückkehrt oder nicht, ist vor allem durch das Profil seiner Arme gegeben. Beim zurückkehrenden Bumerang sind die Arme ähnlich wie beim Tragflügel eines Flugzeuges geformt. Das Profil des Bumerangs erzeugt Auftrieb.

Bei einem symmetrischen Bumerang können die Flügel in verschiedenster Weise angeordnet sein. Wichtig dabei ist nur, dass der Schwerpunkt im Kreuzungspunkt der Arme liegt. Dagegen liegt der Schwerpunkt des unsymmetrischen Bumerangs außerhalb des Kreuzungspunktes. Es kann sogar sein, dass der Schwerpunkt außerhalb des Bumerangs selbst liegt wie beim bekanntesten Bumerang aus Australien.

Bild 1.1: Profil des Bumerangs

Die Flügelprofile der Arme sind spiegelverkehrt angeordnet, da der Bumerang im Flug rotiert und die Vorderkante des Bumerangs in Anströmrichtung zeigen muss.

Beim Kauf eines Bumerangs muss darauf geachtet werden, ob der Werfer links- oder rechtshändig ist, je nachdem muss der Bumerang gebaut sein. Der Rechtshänderbumerang fliegt nach dem Abwurf eine Linkskurve. Der Linkshänderbumerang verhält sich spiegelbildlich. In unseren Versuchen beziehen wir uns ausschließlich auf den Rechtshänderbumerang.

1.3 Flugphasen

Die Flugbahn eines Bumerangs ist charakterisiert durch eine nahezu vertikale Lage beim Abwurf, geht dann in eine kreisförmige Bahnkurve über und gegen Ende der Flugphase legt sich der Bumerang horizontal.

1.3.1 Abwurf

Ob ein Bumerang gut fliegt und zu seinem Werfer zurückkommt, hängt unter Anderem von dem Abwurf des Werfers ab. Der Werfer klemmt die Flügelspitze zwischen Daumen und gekrümmten Zeigefinger.

Bild 1.2 Handhaltung des Bumerangs

Dann stellt er sich wie beim Speerwurf hin und kippt den Bumerang nach hinten, so dass sich der Schwerpunkt unter dem Handgelenk befindet. Dann wird er aus nahezu senkrechter Position so weggeschleudert, dass er in Rotation gerät. Die Weite des Fluges hängt kaum oder gar nicht von der Abwurfgeschwindigkeit ab, sondern sie ist auf die Bauform des Bumerangs zurückzuführen. Was jedoch von der Abwurfgeschwindigkeit abhängt, ist die Geschwindigkeit beim Flug und die Winkelgeschwindigkeit mit der sich der Bumerang dreht.

Beim Abwurf sind drei Winkel von großer Bedeutung: Erstens der Abwurfwinkel, zweitens der Horizontwinkel und drittens der Luv-Winkel.

<u>Abwurfwinkel </u>

Bild 1.3 Abwurfwinkel

Der richtige Abwurfwinkel befindet sich zwischen der Vertikalen und der anfänglichen Rotationsebene des Bumerangs. Er variiert je nach Bauart des Bumerangs. Der Winkel liegt im Allgemeinen zwischen 15° und 45°.

Horizontwinkel γ

Der Horizontwinkel beschreibt den Winkel zwischen Horizontale und Abwurfrichtung. Er sollte ca. 15° betragen.

Bild 1.4 Horizontwinkel

<u>Luv-Winkel λ</u>

Der Luv-Winkel bezeichnet den Winkel zwischen Abwurfrichtung und Windrichtung. Der Rechtshänderbumerang muss in einem bestimmten Winkel nach rechts abgeworfen werden. Der Luvwinkel richtet sich sehr nach dem Wind: Je stärker der Wind weht, desto mehr muss der Werfer ihm den Rücken zudrehen.

Bild 1.5 Luv-Winkel

1.3.2 Kreisbahn

Der Flug eines Bumerangs kann sehr unterschiedlich aussehen, doch von einem gut geworfenen Bumerang sollte die Bahn eine geschlossene Kurve beschreiben. Physikalisch sind zwei Phänomene für die Kreisbahn verantwortlich: Die Aerodynamik, die durch die Profilierung der Arme des Bumerangs zustande kommt und das Verhalten eines sich um eine Achse drehenden Körpers (Präzession).

1.3.3 Aerodynamik eines Bumerangs

In der Strömungsmechanik gilt: Ein Tragflügel erfährt von der anströmenden Luft eine Kraft, die sich in einen Widerstandsanteil und einen dynamischen Auftriebsanteil zerlegen lässt. Durch den Luftwiderstand kommt es während des Fluges zu einer langsamen Abnahme der Bewegungsenergie. Dies bedeutet, dass die Translationsgeschwindigkeit und die Rotationsgeschwindigkeit abnehmen. Diese Tatsache ist für die Rückkehr des Bumerangs nicht von Bedeutung und soll daher vernachlässigt werden. Eine viel wichtigere Bedeutung haben die Auftriebskräfte am luftumströmten Tragflügel. Die Auftriebskraft F_A weist senkrecht zur Strömungsrichtung und zur gewölbten Flügeloberseite. Der Auftrieb wird durch folgende Formel beschrieben:

$$F_A = c_A \cdot \rho \cdot v^2 \cdot S \tag{1.1}$$

Die geometrischen Daten des Flügels, die Dichte der Luft und die jeweils vorhandene Art der Strömung sind konstant, daher können wir diese Formel vereinfachen, indem wir eine konstante Größe k für sie einsetzen. So erhalten wir folgende Formel:

$$F_A = k \cdot v^2 \tag{1.2}$$

Um die Auftriebskräfte an einem rotierenden Bumerang zu veranschaulichen, muss man sich dessen Geschwindigkeiten genauer anschauen.

Beim Abwurf des Bumerangs werden die Translationsgeschwindigkeit v_T und die Rotationsgeschwindigkeit ω auf den Bumerang übertragen, deren Grundzüge während des Fluges beibehalten werden. Dies bedeutet, dass man zu jedem Zeitpunkt an verschiedenen Stellen des Bumerangs unterschiedliche Geschwindigkeiten messen kann.

Zur besseren Erklärung wurde ein Momentanbild direkt nach dem Abwurf zu einem Zeitpunkt gewählt, bei dem 2 gegenüberliegende Flügelenden nach oben und nach unten zeigen.

Gegeben sind folgende Daten:

- Fluggeschwindigkeit v
- Rotationsgeschwindigkeit ω
- Flügellänge a

Bild 1.6 Geschwindigkeitsüberlagerung

Während sich am oberen Flügelende die Translationsgeschwindigkeit mit der Rotationsgeschwindigkeit zu einem Maximalwert addiert, kompensieren sie sich teilweise am unteren Flügelende. Die Beträge der Geschwindigkeiten sind unterschiedlich. Der Betrag am oberen Flügelende ist größer als der Betrag am unteren. Die Geschwindigkeiten am vorderen und hinteren Flügelende sind in dieser Vereinfachung gleich groß.

Wie oben erläutert wurde, ist der Auftrieb abhängig von den Geschwindigkeiten und somit haben wir am oberen Flügelende eine größere Auftriebskraft als am unteren.

Bild 1.7 Verteilung der Auftriebskräfte

Dreht man dieses Bild nun, erhält man folgende Auftriebskräfte an der unteren und oberen Flügelspitze gemäß Abb. a). In der Abb. b) wird ein äquivalentes Bild zur Abb. a) gezeigt, nur dass die Kräfte zerlegt wurden.

Bild 1.8 Kräftezerlegung

Die eingezeichnete Kraft F bewirkt eine Verschiebung des Bumerangs bei einer gleich bleibenden Orientierung der Drehachse. Das Kräftepaar F_1 und F_2 bewirkt beim sich bewegenden Bumerang ein Drehmoment. Dieses Drehmoment ist für die weitere Analyse von Bedeutung.

1.3.4 Der Bumerang als Kreisel

Wie oben beschrieben greift das Kräftepaar F_1 und F_2 am Bumerang an und versucht diesen um die x-Achse zu kippen, dadurch entsteht ein Drehmoment. Da sich der Bumerang wie ein Kreisel verhält, kippt er nicht um, sondern reagiert auf das äußere Moment durch eine Richtungsänderung der Drehachse. Der Vektor der Rotationsgeschwindigkeit wandert in Richtung der positiven x-Achse. Diese Drehung heißt Präzession und erfolgt um die y-Achse mit der Präzessionsgeschwindigkeit ω_P . Die Präzession lässt sich mit folgender Formel nach **Lindner 1993** (Seite 108) berechnen:

$$\omega_P = \frac{M}{J \cdot \omega} \tag{1.3}$$

Die Dreh- und Momentenachsen sind dabei folgendermaßen angeordnet:

Bild 1.9: Präzession des Bumerangs

Um die Präzession zu verdeutlichen, muss man sich vorstellen, dass beim Versuch des Kippens eine zusätzliche Geschwindigkeit v_K , die senkrecht zur Rotationsebene steht, hinzukommt. Diese Geschwindigkeit ist für zwei Punkte P₁ und P₂ in Abbildung a) eingezeichnet. Die Kippgeschwindigkeit v_K überlagert sich dabei mit der Rotationsgeschwindigkeit v_R in diesen Punkten zu einer resultierenden Geschwindigkeit v_{res} . wie man in Abb. b) erkennen kann. Die Rotationsebene dreht sich um die y-Achse. Man schaut von oben auf die y- Achse und damit auf die Punkte P₁ und P₂.

Bild 1.10 Präzessionsbewegung

Bild 1.11 Geschwindigkeitskomponenten der Präzession

Zusammengefasst haben wir eine Kraft, die den Bumerang nach links drückt und eine Präzession, die die Rotationsebene um die y-Achse dreht. Beide Bewegungen wirken zusammen und führen zu der beobachteten Kreisbahn. Die nächste Abbildung verdeutlicht dieses Zusammenwirken. Man muss sich den Flug des Bumerangs aus der Vogelperspektive vorstellen. Wir bilden im Schwerpunkt des Bumerangs von den Kräften, die für die Linksverschiebung verantwortlich waren, eine resultierende Auftriebskraft F_{res} . Diese Auftriebskraft weist stets senkrecht zur momentanen Geschwindigkeit v_T des Bumerangschwerpunktes. Sie stellt die Zentripetalkraft dar, die den Bumerang auf eine Kreisbahn zwingt. Die resultierende Kraft bewirkt eine Krümmung der Flugbahn nach links, dadurch entsteht eine Drehung des Geschwindigkeitsvektors v_T entgegen dem Uhrzeigersinn. Die Rotationsebene geht mit dem Kurvenflug des Bumerangs einher. Sie dreht dabei entgegen dem Uhrzeigersinn.

Bild 1.12: Idealisierte Kreisbahn

Nach dieser Beschreibung durchfliegt der Bumerang eine idealisierte Bahn. In Wirklichkeit würde der Bumerang während des Weges abstürzen. Mit zunehmender Flugstrecke in der Kreisbahn legt der Bumerang sich jedoch flach und verhindert somit sein Abstürzen.

1.3.5 Das Flachlegen des Bumerangs

Mit den bisherigen Überlegungen lässt sich das Flachlegen am Ende der Flugphase nicht erklären. Bei der Erklärung der Kreisbahn sind wir davon ausgegangen, dass die Auftriebskräfte in den Punkte Q und Q' als gleich groß angesehen werden, doch davon können wir nicht ausgehen, da der nacheilende Flügel durch eine turbulentere Strömung fliegt als der voraneilende. Die Anströmgeschwindigkeiten sind zwar gleich doch der Wert k ändert sich insofern, als dass wir eine turbulentere Strömung durchfliegen, die wir zuvor als konstant deklariert haben. Der nachfolgende Arm produziert wegen der Wirbel, die der vorige Arm hinterlässt, einen kleineren Auftrieb.

Bild 1.13 Turbulenzen bei der Rotation

Bild 1.14 Auftriebsverteilung beim turbulenten Flug

Korrigiert man diese Kräfteverteilung in den Punkten Q und Q', dann erkennen wir, dass analog zu dem Kräftepaar P und P' ein Kräftepaar senkrecht in den Punkten Q und Q' existiert. Dies führt zu einem Drehmoment, welches den Bumerang um die y-Achse zu kippen versucht. Durch die Einwirkung der Präzession um die x-Achse, kommt es zu einem allmählichen Kippen und letztendlich zum Flachlegen des Es kann sogar soweit Bumerangs.

gehen, dass sich der Bumerang nicht nur in die horizontale flachlegt sondern sich darüber hinaus weiter dreht. Die Oberseite des Bumerangs kann sich nun soweit drehen, dass sie zur andern Seite weist. Wenn dies passiert, schließt sich nach der Linkskurve eine Rechtskurve an. Auf diese Weise entstehen am Ende die S-förmigen und 8-förmigen Flugbahnen.

1.3.6 Die Autorotation

Die Autorotation hat mit der eigentlichen Rückkehr des Bumerangs nichts mehr zu tun, jedoch kann man sie am Ende häufig beobachten.

Aus den oben genannten Gründen hat sich der Bumerang am Ende seines Fluges flachgelegt, häufig meint der Betrachter, dass gerade am Ende die Rotation des Bumerangs zunähme. Die Auftriebskräfte verteilen sich symmetrisch auf dem Bumerang und werden nur noch durch dir Rotationsbewegung hervorgerufen, da die Translationsbewegung weitgehend verschwunden ist. Es findet keine Präzession mehr statt. Die eigentliche Bumerang-Bewegung ist beendet. Der Bumerang rotiert in einer waagerechten Ebene und sinkt langsam zu Boden. Durch dieses Absinken haben zusätzlich der Rotationsgeschwindigkeit die wir zu VR Geschwindigkeitskomponente v_S. Es entsteht eine Resultierende v_{res} die schräg vom Bumerang nach unten zeigt. Senkrecht auf dieser Resultierenden steht der Auftrieb F_A. Des Weiteren muss die Widerstandskraft F_w mitberücksichtigt werden. Zusammen mit dem Auftrieb entsteht auch hier eine Resultierende F_{Res.} die nach vorne gerichtet ist Die Tangentialkraft T wirkt in Drehrichtung und beschleunigt den Flügel, sodass die Autorotation-Geschwindigkeit bis zu einem bestimmten Wert zunimmt, der weitaus über dem der Abwurfphase liegt. Die Geschwindigkeitskomponente v_R nimmt zu, was wiederum bedeutet, dass der Vektor v_{Res} flacher auf den Flügel auftrifft. Dadurch neigt sich die Resultierende F_{Res} nach hinten. Die Tangentialkraft T wirkt entgegen der Drehrichtung und bremst die Rotation ab.

Bild 1.15 Autorotation

2 Feldversuch

2.1 Bumerangdaten

Für die Versuchsreihe verwendeten wir das Modell "Tristar", in Handarbeit hergestellt und vertrieben von Winfried Gorny. Bei diesem Bumerang handelt es sich um einen dreiflügeligen, symmetrischen Rückkehrbumerang.

Basisdaten:

Spannweite:	225	mm
Maximale Dicke:	3	mm
Gewicht:	21,9	g
Dichte:	750	kg/m ³

Bild 2.1 Bumerang "Tristar"

Die Oberfläche und das Massenträgheitsmoment müssen durch Messverfahren bestimmt werden, die im Folgenden erklärt werden.

2.1.1 Bestimmung der Oberfläche

Bild 2.2 Oberflächenmessung durch ein Polar-Planimeter

Für die Bestimmung der Oberfläche wurde der Bumerang auf ein Blatt Millimeter-Papier gelegt und der Umriss nachgezeichnet. Dieser Umriss wurde anschließend mit einem Polar-Planimeter nachgefahren. Dabei wurden der Anfangs- und der Endwert auf der Werteskala abgelesen. Die Differenz multipliziert mit einem Umrechnungsfaktor ergab den Flächeninhalt in mm². Bei dem Polar-Planimeter, welches wir verwendeten, war der Umrechnungsfaktor 20.

$$A = (Endwert - Anfangswert) \cdot Umrechnungsfaktor$$
$$A = (2930 - 2402) \cdot 20mm^{2}$$
$$A = 10560mm^{2}$$

(2.1)

2.1.2 Bestimmung des Massenträgheitsmomentes

Im Windkanalversuch (siehe Kapitel 3) kann durch Messung des Drehmomentes M_z die Präzessionsgeschwindigkeit bestimmt werden. Nach Formel (1.3) wird hierfür das Massenträgheitsmoment des Bumerangs benötigt. Dieses wurde in einem Versuch experimentell bestimmt. Der Versuchsaufbau bestand aus einem Drehtisch.

Bild 2.3 Versuchsaufbau Massenträgheitsmoment

Eine Spiralfeder war mit einem Ende an dem Gehäuse des Drehtisches und mit dem anderen Ende an einer senkrechten Achse befestigt. Auf dieser Achse ist ein Drehteller fixiert, auf dem verschiedene Körper befestigt werden können. Damit ließ sich das Massenträgheitsmoment des Bumerangs bestimmen.

Der Drehtisch wurde mit Hilfe einer Stange aus der Ruhelage ausgelenkt, und führte dadurch Schwingungen aus. Die Periodendauer T wurde mit einer elektrischen Stoppuhr gemessen.

Das Rücktreibende Drehmoment M ist proportional zum Auslenkungswinkel φ . Die Proportionalitätskonstante D nennt man Direktionsmoment oder Richtmoment. Ihr Wert hängt von der Stärke der Feder ab. Unter Vernachlässigung der Reibung erhält man den Ansatz:

$$M = -D \cdot \varphi \tag{2.2}$$

Die Periodendauer einer Drehschwingung berechnet sich nach Lindner 1993 (Seite: 169) wie folgt:

$$T = 2 \cdot \pi \cdot \sqrt{\frac{J}{D}}$$
(2.3)

Durch Umformen ergibt sich:

$$J = \frac{T^2 \cdot D}{4 \cdot \pi^2} \tag{2.4}$$

Aus dieser Formel können die Trägheitsmomente verschiedener Körper ermittelt werden.

Da das Eigenträgheitsmoment des Drehtisches und das Direktionsmoment der Spiralfeder nicht bekannt waren, wurde eine zusätzliche Schwingungsdauermessung mit einem Eichkörper durchgeführt. Das Trägheitsmoment des Eichkörpers war bekannt. Um Messfehler zu verhindern, wurde ein Eichgewicht gesucht, welches ungefähr das gleiche Massenträgheitsmoment aufwies, wie der Bumerang. Durch eine vorangegangene Überschlagsrechnung mit Catia V5¹ wurde ein ungefähres Trägheitsmoment für den Bumerang von $J = 1,534 \cdot 10^4 kgm^2$ erhalten.

Bild 2.4 Eichgewicht

¹ Catia V5 ist ein Konstruktionsprogramm für Ingenieure

Bild 2.5 Skizze Eichgewicht

Das Eichgewicht besaß eine Masse von m = 0.1663kg und ein Volumen von $V = 21,212 \cdot 10^{-6} m^3$. Mit der Masse und dem Volumen konnte nun die Dichte des Eichgewichtes bestimmt werden.

$$\rho_G = \frac{m}{V} = \frac{0.1663kg}{212.12 \cdot 10^{-3} m^3}$$

$$\rho_G = 7839.9 \frac{kg}{m^3}$$
(2.5)

= 42 mm

= 4 mm

= 2 mm

= 8 mm

 $r_{\text{Stange}} = 8 \text{ mm}$

r_G

 h_{G}

 a_{L}

rL

Mit der Dichte ließ sich das Massenträgheitsmoment des Eichgewichtes mit folgender Formel bestimmen. Es musste darauf geachtet werden, dass die Bohrlöcher aus dem Trägheitsmoment subtrahiert werden.

$$J_{G} = \pi \cdot h_{G} \cdot \rho_{G} \cdot (\frac{1}{2} \cdot r_{G}^{4} - \frac{1}{2} \cdot r_{\text{Stange}}^{4} - \frac{3}{2} \cdot r_{L}^{4} - 3 \cdot r_{L}^{2} \cdot a_{L}^{2})$$
(2.6)

 $J_G = 152, 4 \cdot 10^{-6} kgm^2$

Dieser Wert entspricht etwa dem Wert, der mit Catia V5 berechnet wurde. Es wurden drei Versuchsreihen durchgeführt. In der ersten Versuchsreihe wurde nur die Schwingungsdauer des Drehtellers bestimmt, bei der zweiten mit dem zusätzlichen Eichgewicht gemessen und in der dritten Versuchsreihe wurde die Schwingungsdauer des Drehtisches mit dem Bumerang untersucht. Es wurden jeweils drei Messungen der Schwingungsdauer durchgeführt und daraus der Mittelwert gebildet.

1.)

Messung Drehteller					
T _{Dr}	1,488	S			
T _{Dr}	1,487	S			
T _{Dr}	1,491	S			
$T_{Dr,M}$	1,4887	S			

2.)

Messung Drehteller und Eichgewicht				
T _G	1,571	S		
T _G	1,568	S		
T _G	1,569	S		
T _{G.M}	1,5693	S		

3.)

Messung Drehteller und Bumerang				
Τ _B	1,560	S		
Τ _B	1,567	s		
T _B	1,564	S		
T _{B,M}	1,5637	S		

Tabelle 2-1: Messdaten Massenträgheitsmoment

Aus den berechneten $T_{G,M}$ und $T_{Dr,M}$ konnte das Direktionsmoment und das Trägheitsmoment des Drehtisches berechnet werden:

$$D = \frac{4 \cdot \pi^{2} \cdot J_{G}}{T_{G,M}^{2} - T_{Dr,M}^{2}} = \frac{4 \cdot \pi^{2} \cdot 152, 4 \cdot 10^{-6} \, kgm^{2}}{(1,5693s)^{2} - (1,4887s)^{2}}$$

$$D = 24,41 \cdot 10^{-3} \, Nm$$
(2.7)

$$J_{Dr} = \frac{T_{D,M}^{2} \cdot D}{4 \cdot \pi^{2}} = \frac{(1,4887s)^{2} \cdot 24,41 \cdot 10^{-3} Nm}{4 \cdot \pi^{2}}$$
(2.8)

$$J_{Dr} = 1,37 \cdot 10^{-3} kgm^2$$

Mit diesen Werten konnte wiederum das Trägheitsmoment des Bumerangs bestimmt werden.

$$J_{B} = \frac{T_{B,M}^{2} \cdot D}{4 \cdot \pi^{2}} - J_{Dr} = \frac{(1,5637s)^{2} \cdot 24,41 \cdot 10^{-3}}{4 \cdot \pi^{2}} - 1,37 \cdot 10^{-3} kgm^{2}$$
(2.9)
$$J_{B} = 141,87 \cdot 10^{-6} kgm^{2}$$

Es müssen allerdings die drei Löcher für die Schrauben noch mitberücksichtigt werden, damit das Trägheitsmoment stimmt.

 h_B = 3mm = 8mm **r**_{Stange} = 15mm a∟ = 3,4mm

rL

Bild 2.6: Skizze Versuchsbumerang

Bild 2.7: Mitnahme-Löcher

$$J_{BL} = \pi \cdot h_B \cdot \rho_B \cdot \left(\frac{1}{2} \cdot r_{\text{Stange}}^4 + \frac{3}{2} \cdot r_L^4 + 3 \cdot r_L^2 \cdot a_L^2\right) = 71,05 \cdot 10^{-9} \, kgm^2 \tag{2.10}$$

Letztendlich erhalten wir ein Trägheitsmoment von:

$$J_{Roes} = J_{R} + J_{RL} = 141,94 \cdot 10^{-6} \, kgm^2 \tag{2.11}$$

Das aus dem Versuch berechnete Trägheitsmoment stimmt in etwa mit dem Trägheitsmoment aus der Überschlagsrechnung mit Catia V5 überein. Mögliche Fehler, die beim Versuch Einwirkungen auf das Messergebnis haben, können zum einen der Einfluss der Reibung auf die Schwingungsdauer sein, zum anderen könnte ein zusätzliches Moment durch die Schwerkraft des Drehtisches entstanden sein, falls er nicht exakt horizontal stand. Jedoch sind wir mit dem Endergebnis sehr zufrieden und werden mit diesem Ergebnis unsere Auswertungen weiterführen.

2.2 Ziele des Feldversuchs

Das grundlegende Ziel des Feldversuchs ist, die flugmechanischen Basisdaten des Bumerangfluges zu erhalten. Diese Werte bilden die Anhaltspunkte für den Windkanalversuch. Dazu gehören:

- Translationsgeschwindigkeit v
- Drehzahl n

2.3 Versuchsaufbau

Bild 2.8: Aufbau Feldversuch

- a) Leinwand
- b) Markierungsstreifen
- c) Autobatterie
- d) Spannungswandler
- e) Kamera (Ladezustand)
- f) Scheinwerfer
- g) Markierung der Fokusebene
- h) Kamerastativ

Mit einer Videokamera wurde der Flug kurz nach Abwurf aufgenommen. Um die Drehzahl des Bumerangs bestimmen zu können, wurde ein Flügel mit einem schwarzen Klebestreifen gekennzeichnet. Des Weiteren wurde der Bumerang parallel zu einer weißen Leinwand abgeworfen, um durch den Kontrast zum Hintergrund gute Aufnahmen zu erhalten. Auf der Leinwand war eine Strecke der Länge I = 4m durch 2 senkrechte Klebebandstreifen markiert, mit deren Hilfe die zurückgelegte Wegstrecke bestimmt werden konnte.

Mit einem Abstand $d_{FL} = 0.7m$ zur Leinwand wurde eine Fokusebene bestimmt, auf die die Kamera scharf gestellt war und auf der der Bumerang abgeworfen werden sollte. Damit ließ sich bei der Auswertung die Markierung auf einem Bumerangflügel deutlicher erkennen. Diese optische Ebene wurde durch eine auf den Boden gelegte

Holzlatte gekennzeichnet. Ebenso wurde angenommen, dass sich der Bumerang kurz nach Abflug auf einer Geraden bewegte.

Die Kamera befand sich in einem festgelegten Abstand $d_{KL} = 7,7$ m von der Leinwand entfernt und war auf die Mitte zwischen den beiden Abstandsmarkierung gerichtet. Dadurch ließ sich, wie in der Versuchsauswertung gezeigt, der Projektionsfehler eliminieren.

Der Bumerang ist laut Hersteller flugtauglich bis zu einer Windgeschwindigkeit von etwa 5,5 m/s, am Versuchstag selbst herrschte Windstille.

Kameraeinstellungen:

Um trotz der hohen Geschwindigkeiten schärfere Bilder zu erhalten, wurde die Kamera auf den Sportmodus gestellt, was eine kurze Belichtungszeit des Einzelbildes bedeutete. Wie bereits oben beschrieben, wurde der Versuch mit manuellem Fokus durchgeführt.

Aufgrund der schlechten Wetterverhältnisse (wenig Sonnenschein) und dem gewählten Kameramodus, wurden der Bumerang und die Leinwand durch einen Flutlichtstrahler mit einer Leistung von 300 Watt beschienen. Die Energieversorgung dazu lieferte eine Autobatterie, an die ein Spannungswandler angeschlossen war. Dieser Spannungswandler erzeugte aus 12 Volt Gleichspannung die benötigten 220 Volt Wechselspannung.

2.4 Durchführung

Der Bumerang wurde vom Werfer parallel zur Leinwand abgeworfen. Er hatte darauf zu achten, den Bumerang möglichst horizontal und auf der festgelegten Fokusebene abzuwerfen. Der Kameraassistent bediente die Kamera und gab dem Werfer nach jedem Wurf ein Feedback über den Verlauf des Fluges.

2.5 Auswertung

Durch ein Bildbearbeitungsprogramm wurde die Einzelaufnahmen des Bumerangs in ein einziges Bild projiziert. Dabei musste darauf geachtet werden, dass die Markierung der Streckenlänge auf den einzelnen Bildern im Endbild genau aufeinander liegt. Ansonsten könnte bei der Bestimmung der Streckenlänge ein Fehler erzeugt werden.

Bild 2.9: Bumerangflug

Die Flugrichtung war von rechts nach links. Die Rotation erfolgte gegen den Uhrzeigersinn. Trotz der unvermeidbaren Unschärfe war die schwarze Markierung auf jeweils einem Flügel erkennbar.

Auf dem Bild sind 5 Einzelaufnahmen des Bumerangs zu sehen. Die Kamera erzeugte 25 Bilder pro Sekunde, somit wurde alle 0,04 Sekunden ein Bild aufgenommen.

Für die Berechnung der Fluggeschwindigkeit und der Rotationsgeschwindigkeit musste die Messzeit ∆t für die insgesamt 4 Bildsprünge bestimmt werden.

$$\Delta t = 4 \cdot 0,04s = 0,16s$$

(2.12)

2.5.1 Bestimmung der Translationsgeschwindigkeit

Bild 2.10: Translationsgeschwindigkeit

Mit Hilfe von Catia V5 wurde eine Strecke in das Bild gezeichnet. Die Endpunkte der Strecke stimmten mit den Mittelpunkten des ersten und des letzen Bumerangs überein. Dabei zeigte sich, dass die Mittelpunkte der anderen Bumerange nicht auf der Strecke lagen, sondern leicht darüber. Der Bumerang flog somit auf einer Kreisbahn. Zur Vereinfachung wurde aber von einer geraden Bahn ausgegangen. Die Abweichungen sind vernachlässigbar. Die Streckenlänge wurde mit s_{Bild} bezeichnet. Ebenfalls wurde auf dem Bild der Abstand zwischen den Markierungsbalken mit I_{Bild} bemaßt.

Wie auf dem Bild zu erkennen ist, sind die Markierungsbalken nicht vollständig parallel. Beim Aufbau des Versuchs wurde der Abstand der Balken im unteren Bereich gemessen, im gleichen Bereich, an dem I_{Bild} angetragen wird. Es war somit möglich, einen genauen Maßstab festzulegen.

Mit der Maßstabsgleichung ergab sich:

$$s = \frac{s_{Bild}}{l_{Bild}} \cdot l$$

$$s = \frac{138mm}{147,2mm} \cdot 4m$$
(2.13)

s = 3,75m

Das Bild der Kamera erzeugte aber noch einen Projektionsfehler, der an folgender Skizze verdeutlich wird:

Bild 2.11: Skizze Versuchsaufbau

Nach der Formel des zweiten Strahlensatzes gilt:

$$s_{kor} = \frac{s}{d_{KL}} \cdot (d_{KL} - d_{FL})$$
(2.14)

Mit eingesetzten Werten ergibt sich:

$$s_{kor} = \frac{3,75m}{7,7m} \cdot (7,7m - 0,7m)$$
(2.15)

$$s_{kor} = 3,41m$$

Daraus lässt sich die Translationsgeschwindigkeit kurz nach Abwurf bestimmen

$$v = \frac{s_{kor}}{\Delta t} = \frac{3,38m}{0,16s}$$
(2.16)

 $v = 21,31\frac{m}{s}$

2.5.2 Bestimmung der Rotationsgeschwindigkeit

Mit dem gleichen Programm wurde nun eine Strecke auf dem Flügel mit der Markierung gelegt. Der Startpunkt der Strecke ist der Schwerpunkt des Bumerangs. Für die Einzelwinkelmessung wurde jeweils die Strecke des vorherigen Bumerang-Bildes kopiert. Zwischen diesen beiden Strecken wurde jeweils das $\Delta \delta_i$ bestimmt.

Bild 2.12: Rotationsgeschwindigkeit

$$\Delta \delta_{ges} = \sum_{i=1}^{4} \Delta \delta_i$$

$$\Delta \delta_{ges} = 158,5^\circ + 159,8^\circ + 158,0^\circ + 159,6^\circ$$

$$\Delta \delta_{ges} = 635,9^\circ$$
(2.16)

Ein Vollkreis entspricht 360°, die Anzahl der Umdre hungen N somit:

$$N = \frac{\Delta \delta_{ges}}{360^{\circ}} = \frac{635.9^{\circ}}{360^{\circ}}$$

$$N = 1.77$$
(2.17)

$$n = \frac{N}{\Delta t} \cdot 60 \frac{s}{\min} = \frac{1.77}{0.16s} \cdot 60 \frac{s}{\min}$$

$$n = 664 \frac{1}{\min}$$
(2.18)

3 Windkanalversuch

3.1 Ziele des Windkanalversuchs

Durch die Messungen im Windkanal sollen die aerodynamischen und kinematischen Kräfte des Bumerangs gemessen werden.

3.2 Versuchsaufbau

Bild 3.1: Bumerang-Einspannung

Der Bumerang wurde in die Mitte einer Antriebsstange geschoben und dort über eine Halterung arretiert. Diese Stange war über zwei Kugellager auf der Waage drehbar gelagert. Ebenso war an der Stange ein Elektro-Motor angebracht, der für die nötige Drehzahl sorgte. Dabei war darauf zu achten, dass die Drehrichtung dem Flug in der Realität entsprach. In unserer Versuchsdurchführung musste deswegen die Polarität am Elektro-Motor vertauscht werden.

Die Einstellung der Drehzahl erfolgte über ein einstellbares Labornetzgerät. Zur Kontrolle der Drehzahl wurde ein Drehzahlmesser fest angebracht, der fortwährend gemessen hat. Während den Messungen stellte sich heraus, dass Windeinflüsse auf den Motor zu Messfehlern führten. Deswegen wurde der Motor durch einen Pappkarton verkleidet.

Bild 3.2: Aufbau Windkanalversuch

- a) Windkanaldüse
- b) Pappverkleidung
- c) Drehachse
- d) Drehzahlmesser
- e) Staurohr
- f) Betz-Manometer
- g) Thermometer

Bild 3.3: Winkelskala

Bei den Messungen sollte mit unterschiedlichen Anstellwinkeln gearbeitet werden. Deswegen musste die Waage um die Vertikalachse gedreht werden. Für die Messung des Winkels wurde die Senkrechte des Bumerangs als Drehachse gewählt. Über ein Stativ und eine höhenverstellbare Schraube wurde der Drehpunkt auf eine am Boden fixierte Skala übertragen. Die Skala reicht von 0° bis 15°, bei einer Einteilung von 0,5°. Mit Hilfe eines Winkelabnehmers konnte der benötigte Anstellwinkel eingestellt werden.

Die Einstellung der Anströmgeschwindigkeit erfolgte über den Staudruck q_{∞} . Dieser ließ sich nicht selbst messen, aber durch die Bestimmung des Gesamtdrucks p_{ges} und des statischen Drucks p_{∞} konnte er nach folgender Formel berechnen werden:

$$q_{\infty} = p_{ges} - p_{\infty} \tag{3.1}$$

Bild 3.4: Betz-Manometer

In der Anwendung wurde der Differenzdruck über ein Betz-Manometer bestimmt. An den Anschluss p_1 wird der Gesamtdruck angeschlossen und an den Anschluss p_2 der statische Druck. Auf einer Skala ließ sich nun die Höhe Δh der Wassersäule ablesen. Also gilt:

$$q_{\infty} = \rho_{Wasser} \cdot g \cdot \Delta h \tag{3.2}$$

Daraus ließ sich die Anströmgeschwindigkeit v_∞ bestimmen:

$$v_{\infty} = \sqrt{\frac{2 \cdot q_{\infty}}{\rho_{Luft}}}$$
(3.3)

Da sich die Temperatur und somit die Dichte der Luft im Labor während des Versuchs änderten, muss dies mit einbezogen werden.

$$\rho_{Luft} = \frac{p_{\infty}}{RT}$$
(3.4)

- p∞ statischer Druck, gemessen über elektrisches Barometer im Labor
- R spezifische Gaskonstante; $R = 287 \frac{Nm}{kg \cdot K}$
- T Mittelwert der Temperatur vor und nach einem Messdurchgang

Eingesetzt in die Gleichung (3.3)

$$v_{\infty} = \sqrt{\frac{2 \cdot R \cdot T \cdot q_{\infty}}{p_{\infty}}}$$
(3.5)

Für die Bestimmung der Kräfte wurde eine 6-Komponenten-Waage mit Trägerfrequenzmessverstärker verwendet. Aufgrund der kleinen Kräfte wurde der kleinste Messbereich gewählt. Dieser betrug 1 Newton/400. Kräfte, die in Richtung der Aufnehmer zeigen, werden in der Anzeige positiv dargestellt. Die Aufnehmer sind folgendermaßen angeordnet.

Bild 3.5: Anordnung der Messaufnehmer

Zur Bestimmung der Momente wurden folgende Abstände zwischen den Abnehmern benötigt:

- I = 220 mm
- b = 1270 mm

Die Werte wurden im relativen Koordinatensystem gemessen, das sich aus der folgenden Anordnung der Messaufnehmer ergab.

Bild 3.6: Relatives Koordinatensystem

Somit gilt für die Kräfte und Momente:

$F_{x,rel} = -(W1 + W2)$	(3.0	5)

$$F_{y,rel} = S$$
 (3.7)
 $F_{z,rel} = A1 + A2 + A3$ (3.8)

$$M_{x,rel} = (A3 - A1 - A2) \cdot b \tag{3.9}$$

$$M_{y,rel} = (A2 - A1) \cdot l \tag{3.10}$$

$$M_{z,rel} = (W2 - W1) \cdot b \tag{3.11}$$

Damit die Messwerte bei unterschiedlichen Anstellwinkeln verglichen werden konnten, mussten sie in ein globales Koordinatensystem übertragen werden. Hierbei wird das aerodynamische Koordinatensystem verwendet, bei dem die x-Achse in Anströmrichtung zeigt.

Für die Koordinaten-Transformation ist folgende Skizze hilfreich:

Bild 3.7: Koordinaten-Transformation

Nach den trigonometrischen Funktionen für ein rechtwinkliges Dreieck gilt daher:

$$F_{x} = F_{x,rel} \cdot \cos(\alpha) + F_{y,rel} \cdot \sin(\alpha)$$
(3.12)

$$F_{y} = -F_{x,rel} \cdot \sin(\alpha) + F_{y,rel} \cdot \cos(\alpha)$$
(3.13)

$$F_z = F_{z,rel}$$
(3.14)

$$M_{x} = M_{x,rel} \cdot \cos(\alpha) + M_{y,rel} \cdot \sin(\alpha)$$
(3.15)

$$M_{y} = -M_{x,rel} \cdot \sin(\alpha) + M_{y,rel} \cdot \cos(\alpha)$$
(3.16)

$$M_{z} = M_{z,rel}$$
(3.17)

3.3 Durchführung

3.3.1 Wahl der Messparameter

Aus dem Feldversuch wurden folgende Werte für den Abwurf gewonnen:

•
$$v = 21,31\frac{m}{s}$$

• $n = 664\frac{1}{\min}$

Da sich diese Werte während des Fluges ändern, wurden folgende Bereiche gewählt:

•
$$v = 4\frac{m}{s}$$
 bis $20\frac{m}{s}$, in Schritten zu $4\frac{m}{s}$

•
$$n = 360 \frac{1}{\min}$$
 bis $720 \frac{1}{\min}$, in Schritten zu $120 \frac{1}{\min}$

Für den Anstellwinkel α gibt es keine konkreten Anhaltspunkte. **Hess 1975** (Seite 355) verweist in seinem Buch zwar auf Werte zwischen 0° und 15°, eine Herleitung oder Quellenangabe fehlt jedoch. Wir übernahmen diese Anhaltspunkte und stellten während der Versuchsdurchführung fest, dass sie einen guten Bereich abdeckten.

• $\alpha = 0^{\circ} bis 15^{\circ}$, in Schritten zu 5°

3.3.2 Ablauf der Messung

Messhierarchie:

- \rightarrow Anstellwinkel
 - \rightarrow Messung mit/ohne Bumerang
 - → Anströmgeschwindigkeit
 - \rightarrow Drehzahl

Als Messdurchgang wurde eine Messung mit festem Anstellwinkel, ein- oder ausgebauten Bumerang und Einstellung aller Anströmgeschwindigkeiten mit den entsprechenden Drehzahlen bezeichnet.

Es wurden Messungen mit und ohne Bumerang durchgeführt, um den Einfluss der rotierenden Stange zu kompensieren. Dies bedeutete, dass bei der Auswertung die Messwerte ohne Bumerang von den Messwerten mit Bumerang subtrahiert werden. Dies ergibt anschließend die genaueren Kräfte für den Bumerang.

Vor jedem Messdurchgang war die Waage neu zu nullen, um Messfehler gering zu halten und das Gewicht des Bumerangs zu kompensieren.

Durch den Betrieb des Windkanals erhöht sich die Temperatur im Raum. Wie in der Gleichung (3.5) gezeigt wurde, beeinflusste dies die tatsächliche Anströmgeschwindigkeit. Deswegen wurde die Raumtemperatur vor und nach jedem Messdurchgang gemessen und der Mittelwert bestimmt. Ebenso wurde über das elektrische Barometer der aktuelle Luftdruck gemessen. Bei der Auswertung zeigte sich, dass der Fehler durch Temperaturschwankungen in der Größenordnung von 0,5% lag. Dieser Wert ist vernachlässigbar klein und wurde deswegen nicht weiter berücksichtigt.

3.4 Auswertung

Die Kontrollmessung ergab, dass die Windkanalmessung mit sehr großen Messfehlern behaftet ist (siehe Anhang). Die Schwankungen sind teilweise so groß, dass eine wissenschaftlich fundierte Auswertung nur beschränkt möglich war. Auf den ersten Blick schienen nur die F_x -Werte und die F_y -Werte verwendbar zu sein. Nach kritischer Durchsicht aller F_x -Werte zeigte sich jedoch, dass auch diese nicht verwendbar waren. Teilweise ergaben sich sogar positive Kräfte, die eine physikalisch nicht mögliche Schuberzeugung seitens des Bumerangs bedeuten würden. Dadurch entfiel auch die in Kapitel 2.1.2 angedeutete Auswertung der Präzessionsgeschwindigkeit, da die Bestimmung von M_z auf der Messung von F_x beruht.

Ursache für diesen Messfehler könnte in den Rahmenbedingen des kleinen Windkanals liegen. Sehr nah hinter der Messstrecke war eine Raumwand, die der anströmenden Luft entgegenstand. Diese staute sich auf und störte dadurch die Gleichmäßigkeit der Anströmung. Eine Abhilfe wäre eine gelenkte Rückführung der Luft, wie es im neuen Windkanal vorgesehen ist.

3.4.1 C_A in Abhängigkeit des Anstellwinkels α und der Drehzahl n

Für jede Drehzahl wurde für jeden Anstellwinkel der c_A -Wert bestimmt. In der Theorie ist der c_A -Wert unabhängig von der Geschwindigkeit. In der Auswertung wurde jedoch der c_A -Wert für jede Geschwindigkeit ermittelt und anschließend der Mittelwert berechnet. Es gilt:

$$c_A = \frac{F_A}{\sigma \cdot v^2 \cdot S} \tag{3.18}$$

Durch die Anordnung unserer Messwaage entspricht F_A dem Betrag von F_y , wenn der Bumerang waagerecht liegt.

$$c_A = \frac{\left|F_y\right|}{\sigma \cdot v^2 \cdot S} \tag{3.19}$$

n [1/min]	α [°]	C _A für 4 m/s	C _A für 8 m/s	C _A für 12 m/s	C _A für 16 m/s	C _A für 20 m/s	C _A Mittelwert
	0	keine Messdaten			0,00	0,01	0,01
360	5	0,18	0,22	0,23	0,24	0,24	0,22
500	10	0,46	0,45	0,45	0,46	0,46	0,46
	15	0,65	0,60	0,58	0,57	0,56	0,59
	0	ke	keine Messdaten			0,03	0,02
480	5	0,26	0,24	0,23	0,24	0,23	0,24
400	10	0,58	0,46	0,46	0,45	0,46	0,48
	15	0,81	0,64	0,58	0,59	0,60	0,64
	0	keine Messdaten			0,01	0,03	0,02
600	5	0,32	0,22	0,23	0,25	0,25	0,26
000	10	0,62	0,49	0,47	0,48	0,47	0,51
	15	0,97	0,68	0,61	0,58	0,58	0,69
	0	keine Messdaten			0,02	0,03	0,03
720	5	0,40	0,25	0,24	0,25	0,25	0,28
	10	0,77	0,50	0,48	0,48	0,48	0,54
	15	1,11	0,74	0,62	0,58	0,60	0,73

Tabelle 3-1: c_A-Werte

Bild 3.8: c_A-Werte

Es ist deutlich zu erkennen, dass mit zunehmender Drehzahl und Anstellwinkel der c_A -Wert zunimmt. Bis zu einem Winkel von etwa 8° erfolgt dies linear. Ein Abreißverhalten konnte im untersuchten Bereich nicht nachgewiesen werden.

п

3.4.2 Lastfaktor n

Das nachfolgende Diagramm verdeutlicht den Einfluss des Anstellwinkels α und der Anströmgeschwindigkeit v auf die Auftriebskraft F_y. Dabei wurde die Auftriebskraft in Relation zur Gewichtskraft dargestellt. Dies ist der so genannte Lastfaktor n.

$$=\frac{\left|F_{y}\right|}{G}$$
(3.20)

α []	n [] für 4 m/s	n [] für 8 m/s	n [] für 12 m/s	n [] für 16 m/s	n [] für 20 m/s
0	0,000	0,000	0,000	0,151	0,396
5	0,191	0,481	1,052	1,950	3,042
10	0,369	0,964	2,095	3,681	5,743
15	0,534	1,424	2,706	4,501	7,217

Tabelle 3-2: Lastfaktoren

Bild 3.9: Lastfaktoren

Ein Lastfaktor von n = 1 bedeutet demnach, dass sich der Bumerang in diesem Moment mit den angegebenen Parametern ohne Höhenverlust fortbewegt. Die Lastfaktoren gelten für die Drehzahl n = 720/min.

3.4.3 Änderung der Anströmverhältnisse am Bumerang

Bild 3.10: Turbulenzen der Anströmung

Zur Untersuchung der Anströmverhältnisse wurde ein dünner Baumwollbindfaden in die Strömung gehalten. Dabei deckte der Baumwollfaden die ganze Breite des Bumerangs ab. Für die Fotoaufnahme wurde eine Belichtungszeit von 1 Sekunde gewählt. Dies hatte zur Folge, dass stehende Objekte auf dem Bild mit scharfen Rändern erschienen. Sich schnell bewegende Objekte erschienen dagegen mit einer Unschärfe.

Auf dem Bild ist deutlich zu erkennen, dass innerhalb des vorderen Drittels des Bumerangs der Bindfaden scharf dargestellt wird. Im hinteren Teil ist der Bindfaden kaum zu erkennen, obwohl er vorhanden ist. Wie im Versuch selbst beobachtet werden konnte, flatterte er erheblich. Dies bedeutet, dass sich der hintere Teil des Bumerangs durch eine turbulente Strömung bewegte.

Ebenso kann auf dem Bild festgestellt werden, dass die Flügelspitzen ebenfalls flatterten. Am vorderen Ende war die Auslenkung aber geringer als am hinteren Ende.

Durch die Kombination des Flügelflatterns und der turbulenten Anströmung erfuhr der hintere Teil einen geringeren Auftrieb. Wie in Kapitel 1.3.5 erklärt, kommt es zu dem so genannten Flachlegen des Bumerangs im Flug.

4 Reale Wurfbahnen

In diesem Versuch wollten wir die Flugbahn des Bumerangs sichtbar machen, indem wir mit einer Digitalkamera den Flug des Bumerangs in einer Langzeitaufnahme in einem Bild festhielten. Es boten sich Nachtaufnahmen auf einem Feld an, da dort unseren Aufnahmen keine anderen Lichtquellen stören würden. Hätten wir den Versuch am Tag stattfinden lassen, wäre eine Überbelichtung durch das Tageslicht auf dem Photo nicht ausgeschlossen.

Der Bumerang musste mit einer entsprechenden Lichtquelle ausgestattet werden, damit der Flug verfolgt werden konnte. Eine Glühlampe, die ausreichend helles Licht erzeugen müsste, kam für den Versuch nicht in Frage. Der Bumerang wäre zu schwer und sie hätte damit die Flugbahn entschieden beeinflusst. Wir entschieden uns, eine Wunderkerze mit Hilfe von Klebeband an den Schwerpunkt des Flügels zu befestigen. Wunderkerzen brennen für eine bestimmte Zeit sehr heiß und können durch den Wind nicht ausgeblasen werden.

Damit das Feld nicht nach der Landung Feuer fängt, wurde eine Nacht ausgesucht, in der es vorher geregnet hatte, damit die Wiese feucht war und ein Brand ausgeschlossen werden konnte. Zur Sicherheit wurde natürlich ein Feuerlöscher in der Nähe platziert.

In dem Versuch wurde die Kamera auf ein Stativ moniert und an geeigneter Stelle aufgebaut. Durch das Stativ wurde verhindert, dass keine verwackelten Bilder entstehen.

Den Versuch könnte man mit zwei Personen durchführen, denn einer von beiden muss die Kamera betätigen, während der andere den Bumerang in geeigneter Entfernung wirft. Es haben sich jedoch drei Freiwillige gefunden, die es erleichtert haben, den Versuch durchzuführen.

Bild 4.1: Gruppe des Nachtversuches:

Nele Stößer, Nico Alpert, Monika Sarbajna, Mathias Simon, Carsten Schulze (v.l.n.r) Die fünf Personen waren mit dem ständigen Fotografieren, Werfen und dem Anzünden der Wunderkerze beschäftigt. Der Fotograf hatte die Belichtungszeit der Kamera variabel gewählt. Sie wurde nach der Flugdauer des Bumerangs bestimmt. Der Flug dauerte von 4 bis 6 Sekunden. Die ersten Bilder waren, nachdem wir uns eingeworfen hatten, ein Erfolg. Leider waren einige Aufnahmen unbrauchbar, weil der Bumerangflug nicht ganz auf dem Bild war.

Die Abbildung zeigt eine sehr schöne Aufnahme: Der Bumerang wurde leicht nach oben mit einem geringen Neigungswinkel abgeworfen, vollendet seinen Kurvenflug und endet fast beim Werfer. Der weiße Pfeil kennzeichnet die Abwurfrichtung.

Bild 4.2: Wurf 1

Beim Abwurf entstand eine helle Stelle, weil der Bumerang dort eine längere Zeit an einer Stelle ruhte. Außerhalb der Flugbahn kann man glühende Teilchen erkennen, die dadurch entstanden sind, dass von den Wunderkerzen Funken wegflogen.

Auf dem Bild kann man eine "Wellenbahn" erkennen. Sie setzt sich aus der Überlagerung einer Rotations- und Translationsbewegung zusammen.

Bild 4.3: Wurf 2

Bei diesen Abbildungen ist der Knick am Ende der Flugbahn auffallend. Das Absinken ist nahezu senkrecht. Hier ist der Bumerang am Anfang recht weit aufgestiegen.

Bild 4.4: Wurf 3

Bild 4.5: Wurf 4

Mit Fortschreiten unseres Versuches hat die Kälte leider negativen Einfluss auf die Lichtintensität der Wunderkerzen gehabt, so dass unsere Aufnahmen immer schwächer wurden.

5 Zusammenfassung

Die vorliegende Studienarbeit behandelte die Grundlagen eines zurückkehrenden Bumerangs. Beginnend mit dem theoretischen Teil der Arbeit wurde gezeigt, was für wesentliche Baueigenschaften ein Bumerang besitzen muss, damit er Rückkehr-Eigenschaften erhält. Ebenso wurde erläutert, welche grundlegenden Prinzipien beim Abwurf zu beachten sind. Nach dieser Einführung wurde die Flugmechanik beschrieben, die erst die Rückkehr des Bumerangs ermöglicht. Insbesondere wurde verständlich gemacht, dass die Kombination der Rotation und der Translation für den Bumerangflug essenziell sind.

Ausgehend von der Theorie wurde anschließend ein dreiflügeliger Bumerang untersucht. Mittels eines Feldversuchs gelang es, die Wurfparameter Translationsund Rotationsgeschwindigkeit kurz nach dem Abwurf zu bestimmen. Aufgrund dieser Daten wurde anschließend der Bumerang im Windkanal untersucht. Leider zeigte sich bei der Auswertung, dass die auftretenden Messfehler nur eine Auswertung der Auftriebskräfte ermöglichten. Diese Ergebnisse waren jedoch höchst zufrieden stellend, bestätigten sie doch die aus der Theorie erwartete Abhängigkeit von Translations- und Rotationsgeschwindigkeit. Mit Hilfe von Nachtaufnahmen gelang es uns Flugbahnen des Bumerangs zu visualisieren.

Eine erneute Untersuchung im neuen und verbesserten Windkanal der Hochschule wäre möglicherweise eine Idee für eine zukünftige, tiefer gehende Studienarbeit zu diesem interessanten Thema.

Wir hoffen, dass diese Studienarbeit es dem geneigten Leser ermöglichte, die Grundlagen des Bumerangwurfs zu verstehen und womöglich sein Interesse für diese faszinierende Sportart weckte.

6 Literaturverzeichnis

Bretfeld 1985	BRETFELD, Wilhelm: <i>Das Bumerang-Buch: wie man Bumerangs baut, wirft, fängt und warum sie fliegen.</i> Stuttgart: Franckh, 1985
Gorny 2004	GORNY, Winfried: <i>Das Bumerang-Projekt</i> , 2004 URL: http://bumerang-projekt.levinpfeiffer.com/index.php (20.11.2005)
Hess 1975	HESS, Felix: <i>Boomerangs, Aerodynamics and Motion.</i> Groningen: Verenigde Reproduktie Bedrijven 1975
Lindner 1993	LINDNER, Helmut: <i>Physik für Ingenieure.</i> Leipzig: Fachbuchverlag Leipzig 1993
Ringelnatz 1964	RINGELNATZ, Joachim: <i>Und auf einmal steht es neben dir.</i> Berlin: Karl H. Henssel, 1964
Rodewald; Schlichting 1986	RODEWALD, Bernd; SCHLICHTING, Hans J: <i>Der Bumerang - ein Spielzeug mit verblüftenden Flugeigenschaffen,</i> 1986 URL: http://www.swissboomerangs.ch/content/boom_phys.pdf (03.11.2005)
Scholz 2001	SCHOLZ, Dieter: <i>Diplomarbeiten normgerecht verfassen.</i> Würzburg: Vogel, 2001
Weber 1977	WEBER, Klaus: <i>Der Bumerang. Ein Rotationsflugkörper.</i> Frankfurt: Als-Verlag 1977
Wiltsche 2001	WILTSCHE, Harald: <i>Der Bumerang - ein fächerübergreifendes</i> <i>Projekt,</i> 2001 URL: http://pluslucis.univie.ac.at/PlusLucis/011/s2024.pdf (17.03.2006)

Anhang A Daten des Windkanalversuches

Windkanalversuch Anstellwinkel $\alpha = 0^{\circ}$ Messwerte

Versuch	sparamet	er	Messv	verte m	it Bum	erang			Messv	werte o	hne Bu	Imeran	g		ϑ _{vor}	ϑ _{nach}
v	q∞	n	A1	A2	A3	S1	W1	W2	A1	A2	A3	S1	W1	W2	Klammer	werte sind
[m/s]	[mmWS]	[1/min]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	Bumera	gen onne ang [℃]
		360					•									
1	1 00	480			keine M	asswarta					koino M	asswarta				
-	1,00	600			Keine Im	coswerie					Keine IVI	esswerte				
		720														
		360														
8	4.00	480			keine Me	esswerte					keine M	esswerte				
_	600															
		720														
		360														
12	8,99	480			keine Me	esswerte					keine M	esswerte				
		600														
		720								1		1				
		360	32	3	25	-1	418	372	10	-16	2	1	413	352	21,8(21,5)	
16	15,98	480	30	5	29	-3	427	370	16	-11	5	2	415	352		
		600	28	6	34	-5	425	375	18	-11	6	0	418	362		
		720	31	9	34	-12	424	370	70 22 -9 8 1 405							21,9(21,9)
		360	37	-10	18	-9	680	584	27	-18	9	6	645	564		21,8(22,4)
20	24.97	480	36	-12	16	-14	655	573	24	-12	6	13	651	572		
	,	600	29	-17	18	-20	650	585	24	-12	12	9	648	563		
		720	30	-18	20	-32	650	585	27	-13	10	2	635	560	20,8/(21,9)	

Windkanalversuch Anstellwinkel $\alpha = 0^{\circ}$ Zwischenrechnungen

Versuchspa	arameter	Korrigie	erte Mess	werte				Kräfte u	nd Mome	ente im r	elativen l	Bezugssy	<i>y</i> stem
v	n	A1	A2	A3	S	W1	W2	F _{x,rel}	F _{y,rel}	F _{z,rel}	M _{x,rel}	M _{y,rel}	M _{z,rel}
[m/s]	[1/min]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360												
4	480			koino Por	chonworto					kaina Ray	chonworto		
4	600			Keine Keu						Keine Kei	JIEIWEILE		
	720												
	360												
8	480			keine Rec	chenwerte					keine Rec	chenwerte		
0	600												
	720												
	360	_											
12	480			keine Rec	henwerte					keine Rer	henwerte		
12	600												
	720												
	360	55,00	47,50	57,50	-5,00	12,50	50,00	-62,50	-5,00	160,00	-28,58	-0,83	2,38
16	480	35,00	40,00	60,00	-12,50	30,00	45,00	-75,00	-12,50	135,00	-9,53	0,55	0,95
10	600	25,00	42,50	70,00	-12,50	17,50	32,50	-50,00	-12,50	137,50	1,59	1,93	0,95
	720	22,50	45,00	65,00	-32,50	47,50	17,50	-65,00	-32,50	132,50	-1,59	2,48	-1,91
	360	25,00	20,00	22,50	-37,50	87,50	50,00	-137,50	-37,50	67,50	-14,29	-0,55	-2,38
20	480	30,00	0,00	25,00	-67,50	10,00	2,50	-12,50	-67,50	55,00	-3,18	-3,30	-0,48
20	600	12,50	-12,50	15,00	-72,50	5,00	55,00	-60,00	-72,50	15,00	9,53	-2,75	3,18
	720	7,50	-12,50	25,00	-85,00	37,50	62,50	-100,00	-85,00	20,00	19,05	-2,20	1,59

Windkanalversuch Anstellwinkel $\alpha = 0^{\circ}$ Endergebnisse

Versuchsp	arameter	Kräfte und	Momente i	m aerodyna	amischen E	Bezugssyste	em								
v	n	F _x	Fy	Fz	M _x	My	Mz								
[m/s]	[1/min]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]								
	360														
4	480			keine En	nah nina n										
4	600			keine Erg	jednisse										
	720														
	360														
0	480		keine Fraebnisse												
0	600		Keine Ligebiisse												
	720														
	360		koine Ergebniege												
12	480														
12	600			Keille Elő	Jedinisse										
	720														
	360	-62,50	-5,00	160,00	-28,58	-0,83	2,38								
16	480	-75,00	-12,50	135,00	-9,53	0,55	0,95								
10	600	-50,00	1,93	0,95											
	720	-65,00	-32,50	132,50	-1,59	2,48	-1,91								
	360	-137,50	-37,50	67,50	-14,29	-0,55	-2,38								
20	480	-12,50 -67,50 55,00 -3,18 -3,30													
20	600	-60,00	-72,50	15,00	9,53	-2,75	3,18								
	720	-100,00	-85,00	20,00	19,05	-2,20	1,59								

Windkanalversuch Anstellwinkel $\alpha = 5^{\circ}$ Messwerte

Versuch	sparamet	er	Messv	verte m	nit Bum	erang			Messv	verte o	hne Bu	meran	g		ϑ _{vor}	ϑ _{nach}
v	q∞	n	A1	A2	A3	S1	W1	W2	A1	A2	A3	S1	W1	W2	Klammer Messung	werte sind gen ohne
[m/s]	[mmWS]	[1/min]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	Bumera	ang [°C]
		360	6	-2	2	-9	15	23	2	-1	0	-2	21	23	22,7(23,5)	
1	1 00	480	6	0	2	-12	13	23	0	0	0	-2	20	23		
7	1,00	600	6	0	3	-15	15	24	4	0	0	-2	20	23		
		720	6	0	4	-19	16	24	3	0	2	-3	21	24		
		360	6	-2	2	-43	81	88	7	-4	0	-7	82	88		
8	4 00	480	10	-1	3	-45	81	89	0	-4	2	-7	85	98		
Ŭ	1,00	600	13	-1	5	-45	84	91	6	-1	2	-8	85	86		
		720	11	-2	7	-48	81	89	8	-2	5	-7	83	93		
		360	12	-9	4	-100	203	214	9	-11	0	-13	203	206		
12	8 99	480	18	-13	4	-102	199	214	8	-9	2	-15	198	204		
12	0,00	600	15	-7	11	-105	201	215	8	-11	5	-17	204	208		
		720	13	-7	10	-108	206	212	12	-11	4	-16	199	205		
		360	24	-19	3	-174	372	385	15	-23	-1	-17	384	392		
16	15.98	480	18	-18	9	-180	371	385	19	-25	2	-20	377	390		
10	10,00	600	17	-13	12	-181	367	382	19	-19	4	-17	388	403		
		720	26	-13	18	-186	380	378	22	-19	5	-18	383	377		
20		360	31	-32	9	-282	607	620	17	-32	-1	-26	568	572		
	24 97	480	22	-18	11	-279	612	621	25	-39	2	-32	564	582		
20	27,07	600	40	-24	16	-298	609	613	31	-31	4	-27	557	578		
		720	37	-21	21	-294	603	611	34	-36	9	-25	573	566		23,6(23,6)

Windkanalversuch Anstellwinkel $\alpha = 5^{\circ}$ Zwischenrechnung

Versuchspa	arameter	Korrigie	rte Mess	werte				Kräfte u	nd Mome	ente im r	elativen I	Bezugssy	/stem
v	n	A1	A2	A3	S	W1	W2	F _{x,rel}	F _{y,rel}	$F_{z,rel}$	M _{x,rel}	M _{y,rel}	M _{z,rel}
[m/s]	[1/min]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360	10	-2,5	5	-17,5	-15	0	15,00	-17,50	12,50	-1,59	-1,38	0,95
4	480	15	0	5	-25	-17,5	0	17,50	-25,00	20,00	-6,35	-1,65	1,11
4	600	5	0	7,5	-32,5	-12,5	2,5	10,00	-32,50	12,50	1,59	-0,55	0,95
	720	7,5	0	5	-40	-12,5	0	12,50	-40,00	12,50	-1,59	-0,83	0,79
	360	-2,5	5	5	-90	-2,5	0	2,50	-90,00	7,50	1,59	0,83	0,16
8	480	25	7,5	2,5	-95	-10	-22,5	32,50	-95,00	35,00	-19,05	-1,93	-0,79
8	600	17,5	0	7,5	-92,5	-2,5	12,5	-10,00	-92,50	25,00	-6,35	-1,93	0,95
	720	7,5	0	5	-102,5	-5	-10	15,00	-102,50	12,50	-1,59	-0,83	-0,32
	360	7,5	5	10	-217,5	0	20	-20,00	-217,50	22,50	-1,59	-0,28	1,27
12	480	25	-10	5	-217,5	2,5	25	-27,50	-217,50	20,00	-6,35	-3,85	1,43
12	600	17,5	10	15	-220	-7,5	17,5	-10,00	-220,00	42,50	-7,94	-0,83	1,59
	720	2,5	10	15	-230	17,5	17,5	-35,00	-230,00	27,50	1,59	0,83	0,00
	360	22,5	10	10	-392,5	-30	-17,5	47,50	-392,50	42,50	-14,29	-1,38	0,79
16	480	-2,5	17,5	17,5	-400	-15	-12,5	27,50	-400,00	32,50	1,59	2,20	0,16
10	600	-5	15	20	-410	-52,5	-52,5	105,00	-410,00	30,00	6,35	2,20	0,00
	720	10	15	32,5	-420	-7,5	2,5	5,00	-420,00	57,50	4,76	0,55	0,64
	360	35	0	25	-640	97,5	120	-217,50	-640,00	60,00	-6,35	-3,85	1,43
20	480	-7,5	52,5	22,5	-617,5	120	97,5	-217,50	-617,50	67,50	-14,29	6,60	-1,43
20	600	22,5	17,5	30	-677,5	130	87,5	-217,50	-677,50	70,00	-6,35	-0,55	-2,70
	720	7,5	37,5	30	-672,5	75	112,5	-187,50	-672,50	75,00	-9,53	3,30	2,38

Windkanalversuch Anstellwinkel $\alpha = 5^{\circ}$ Endergebnisse

Versuchsp	arameter	Kräfte und	Momente i	im aerodyn	amischen l	Bezugssyst	em
v	n	F _x	Fy	Fz	M _x	My	Mz
[m/s]	[1/min]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360	13,42	-18,74	12,50	-1,70	-1,23	0,95
4	480	15,25	-26,43	20,00	-6,47	-1,09	1,11
4	600	7,13	-33,25	12,50	1,53	-0,69	0,95
	720	8,97	-40,94	12,50	-1,65	-0,68	0,79
	360	-5,35	-89,88	7,50	1,65	0,68	0,16
8	480	24,10	-97,47	35,00	-19,15	-0,26	-0,79
	600	-18,02	-91,28	25,00	-6,49	-1,36	0,95
	720	6,01	-103,42	12,50	-1,65	-0,68	-0,32
	360	-38,88	-214,93	22,50	-1,61	-0,14	1,27
10	480	-46,35	-214,28	20,00	-6,66	-3,28	1,43
12	600	-29,14	-218,29	42,50	-7,98	-0,13	1,59
	720	-54,91	-226,07	27,50	1,65	0,68	0,00
	360	13,11	-395,15	42,50	-14,35	-0,12	0,79
16	480	-7,47	-400,87	32,50	1,77	2,05	0,16
10	600	68,87	-417,59	30,00	6,52	1,64	0,00
	720	-31,62	-418,84	57,50	4,79	0,13	0,64
	360	-272,45	-618,61	60,00	-6,66	-3,28	1,43
20	480	-270,49	-596,19	67,50	-13,66	7,82	-1,43
20	600	-275,72	-655,97	70,00	-6,37	0,01	-2,70
	720	-245,40	-653,60	75,00	-9,20	4,12	2,38

Windkanalversuch Anstellwinkel $\alpha = 10^{\circ}$ Messwerte

Versuch	sparamet	er	Messv	verte m	nit Bum	erang			Messv	verte o	hne Bu	meran	g		ϑ _{vor}	ϑ _{nach}
v	q∞	n	A1	A2	A3	S1	W1	W2	A1	A2	A3	S1	W1	W2	Klammer	werte sind
[m/s]	[mmWS]	[1/min]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	Bumera	gen onne ang [℃]
		360	4	-1	1	-20	21	23	5	-2	2	-1	22	24	22(20,8)	
Λ	1.00	480	9	0	0	-24	22	23	5	-1	3	0	22	25		
4	1,00	600	10	2	0	-28	22	22	6	-1	4	-2	21	24		
		720	11	2	1	-34	22	24	5	0	6	-2	23	24		
		360	12	0	-1	-85	87	91	8	-6	5	-8	82	87		
8	4.00	480	19	0	0	-86	89	92	7	-7	7	-8	89	93		
ð	4,00	600	17	0	0	-90	86	91	7	-6	10	-8	87	93		
		720	18	0	1	-94	91	96	8	-6	11	-9	88	94		
		360	23	-6	0	-188	204	210	14	-16	7	-16	203	209		
12	8 99	480	19	-4	1	-190	197	210	10	-20	10	-17	206	202		
12	0,99	600	19	-3	2	-193	208	216	11	-7	17	-12	197	214		
		720	25	-1	3	-196	207	212	17	-13	16	-13	208	210		
		360	26	-15	4	-328	362	370	25	-31	10	-27	373	388		
16	15.08	480	27	-13	-1	-327	370	387	20	-25	13	-27	376	390		
10	10,90	600	33	-18	4	-345	378	384	27	-24	19	-22	372	389		
		720	33	-19	8	-347	378	388	27	-24	22	-23	368	382		
		360	28	-23	3	-513	588	603	39	-48	12	-32	595	606		
20	24 97	480	40	-30	7	-512	590	597	40	-43	23	-30	587	613		
20	24,37	600	45	-33	8	-525	596	596	37	-37	21	-39	600	612		
		720	46	-19	8	-525	592	587	31	-35	28	-30	602	612		22,6(22,1)

Windkanalversuch Anstellwinkel $\alpha = 10^{\circ}$ Zwischenrechnungen

Versuchspa	arameter	Korrigie	rte Mess	werte				Kräfte u	nd Mome	ente im re	elativen I	Bezugssy	/stem
v	n	A1	A2	A3	S	W1	W2	F _{x,rel}	F _{y,rel}	$F_{z,rel}$	$M_{x,rel}$	M _{y,rel}	M _{z,rel}
[m/s]	[1/min]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360	-2,50	2,50	-2,50	-47,50	-2,50	-2,50	5,00	-47,50	-2,50	-1,59	0,55	0,00
4	480	10,00	2,50	-7,50	-60,00	0,00	-5,00	5,00	-60,00	5,00	-12,70	-0,83	-0,32
4	600	10,00	7,50	-10,00	-65,00	2,50	-5,00	2,50	-65,00	7,50	-17,46	-0,28	-0,48
	720	15,00	5,00	-12,50	-80,00	-2,50	0,00	2,50	-80,00	7,50	-20,64	-1,10	0,16
	360	10,00	15,00	-15,00	-192,50	12,50	10,00	-22,50	-192,50	10,00	-25,40	0,55	-0,16
8	480	30,00	17,50	-17,50	-195,00	0,00	-2,50	2,50	-195,00	30,00	-41,28	-1,38	-0,16
8	600	25,00	15,00	-25,00	-205,00	-2,50	-5,00	7,50	-205,00	15,00	-41,28	-1,10	-0,16
	720	25,00	15,00	-25,00	-212,50	7,50	5,00	-12,50	-212,50	15,00	-41,28	-1,10	-0,16
	360	22,50	25,00	-17,50	-430,00	2,50	2,50	-5,00	-430,00	30,00	-41,28	0,28	0,00
12	480	22,50	40,00	-22,50	-432,50	-22,50	20,00	2,50	-432,50	40,00	-53,98	1,93	2,70
12	600	20,00	10,00	-37,50	-452,50	27,50	5,00	-32,50	-452,50	-7,50	-42,86	-1,10	-1,43
	720	20,00	30,00	-32,50	-457,50	-2,50	5,00	-2,50	-457,50	17,50	-52,39	1,10	0,48
	360	2,50	40,00	-15,00	-752,50	-27,50	-45,00	72,50	-752,50	27,50	-36,51	4,13	-1,11
16	480	17,50	30,00	-35,00	-750,00	-15,00	-7,50	22,50	-750,00	12,50	-52,39	1,38	0,48
10	600	15,00	15,00	-37,50	-807,50	15,00	-12,50	-2,50	-807,50	-7,50	-42,86	0,00	-1,75
	720	15,00	12,50	-35,00	-810,00	25,00	15,00	-40,00	-810,00	-7,50	-39,69	-0,28	-0,64
	360	-27,50	62,50	-22,50	-1202,50	-17,50	-7,50	25,00	-1202,50	12,50	-36,51	9,90	0,64
20	480	0,00	32,50	-40,00	-1205,00	7,50	-40,00	32,50	-1205,00	-7,50	-46,04	3,58	-3,02
20	600	20,00	10,00	-32,50	-1215,00	-10,00	-40,00	50,00	-1215,00	-2,50	-39,69	-1,10	-1,91
	720	37,50	40,00	-50,00	-1237,50	-25,00	-62,50	87,50	-1237,50	27,50	-80,96	0,28	-2,38

Windkanalversuch Anstellwinkel $\alpha = 10^{\circ}$ Endergebnisse

Versuchsp	arameter	Kräfte und	Momente	im aerodyn	amischen I	Bezugssyst	em
v	n	F _x	Fy	Fz	M _x	My	Mz
[m/s]	[1/min]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]	[mN]
	360	-3,32	-47,65	-2,50	-1,47	0,82	0,00
4	480	-5,49	-59,96	5,00	-12,65	1,39	-0,32
4	600	-8,83	-64,45	7,50	-17,24	2,76	-0,48
	720	-11,43	-79,22	7,50	-20,51	2,50	0,16
	360	-55,59	-185,67	10,00	-24,92	4,95	-0,16
0	480	-31,40	-192,47	30,00	-40,89	5,81	-0,16
0	600	-28,21	-203,19	15,00	-40,84	6,08	-0,16
	720	-49,21	-207,10	15,00	-40,84	6,08	-0,16
	360	-79,59	-422,60	30,00	-40,60	7,44	0,00
10	480	-72,64	-426,36	40,00	-52,82	11,27	2,70
12	600	-110,58	-439,98	-7,50	-42,40	6,36	-1,43
	720	-81,91	-450,12	17,50	-51,40	10,18	0,48
	360	-59,27	-753,66	27,50	-35,24	10,40	-1,11
16	480	-108,08	-742,51	12,50	-51,35	10,45	0,48
10	600	-142,68	-794,80	-7,50	-42,21	7,44	-1,75
	720	-180,05	-790,75	-7,50	-39,13	6,62	-0,64
	360	-184,19	-1188,57	12,50	-34,24	16,09	0,64
20	480	-177,24	-1192,34	-7,50	-44,72	11,52	-3,02
20	600	-161,74	-1205,22	-2,50	-39,28	5,81	-1,91
	720	-128,72	-1233,89	27,50	-79,68	14,33	-2,38

Windkanalversuch Anstellwinkel $\alpha = 15^{\circ}$ Messwerte

Versuch	sparamet	er	Messv	verte m	nit Bum	erang			Messv	verte o	hne Bu	meran	g		ϑ _{vor}	ϑ _{nach}
v	q∞	n	A1	A2	A3	S1	W1	W2	A1	A2	A3	S1	W1	W2	Klammer	werte sind
[m/s]	[mmWS]	[1/min]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	Bumera	gen onne ang [℃]
		360	7	-2	2	-28	16	21	4	-1	1	0	19	21	21,4 (22,5)	
1	1 00	480	8	-1	4	-34	16	22	2	-1	3	0	20	20		
4	1,00	600	8	0	5	-40	15	21	2	0	2	0	20	22		
		720	9	0	6	-48	18	22	0	0	4	-1	21	21		
		360	10	-8	3	-113	84	88	5	-4	2	-11	86	89		
8	4 00	480	13	-4	3	-120	86	89	5	-2	3	-11	87	91		
o	1,00	600	12	-5	3	-128	83	89	8	-3	5	-12	87	86		
		720	13	-4	6	-138	81	90	8	-1	6	-11	84	86		
		360	15	-15	10	-248	197	202	11	-9	0	-26	200	208		
12	8 99	480	14	-7	8	-253	200	211	9	-13	1	-24	196	193		
	0,00	600	15	0	6	-263	197	197	12	-10	5	-27	194	200		
		720	18	-16	13	-267	200	207	10	-7	5	-22	194	197		
		360	23	-30	5	-430	360	368	14	-18	3	-42	354	381		
16	15.98	480	23	-25	9	-440	368	367	14	-19	4	-41	368	378		
10	10,00	600	24	-25	8	-443	363	362	19	-20	2	-45	361	375		
		720	28	-20	14	-443	360	368	22	-20	5	-45	369	368		
		360	33	-32	8	-663	573	587	27	-42	-3	-62	564	605		
20	24 97	480	37	-42	18	-690	572	584	33	-29	3	-52	573	583		
20	21,07	600	40	-37	21	-684	572	586	34	-36	5	-59	573	585		
		720	43	-25	19	-704	565	586	32	-38	8	-71	587	598		22,3 (22,2)

Windkanalversuch Anstellwinkel $\alpha = 15^{\circ}$ Zwischenrechnungen

Versuchspa	arameter	Korrigie	Corrigierte Messwerte Kräfte und Momente im relativen Bezugssystem							/stem			
v	n	A1	A2	A3	S	W1	W2	F _{x,rel}	F _{y,rel}	F _{z,rel}	M _{x,rel}	M _{y,rel}	M _{z,rel}
[m/s]	[1/min]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360	7,50	-2,50	2,50	-70,00	-7,50	0,00	0,00	-70,00	7,50	-1,59	-1,10	0,48
4	480	15,00	0,00	2,50	-85,00	-10,00	5,00	5,00	-85,00	17,50	-7,94	-1,65	0,95
4	600	15,00	0,00	7,50	-100,00	-12,50	-2,50	15,00	-100,00	22,50	-4,76	-1,65	0,64
	720	22,50	0,00	5,00	-117,50	-7,50	2,50	5,00	-117,50	27,50	-11,11	-2,48	0,64
	360	12,50	-10,00	2,50	-255,00	-5,00	-2,50	7,50	-255,00	5,00	0,00	Image: Second state sta	0,16
o	480	20,00	-5,00	0,00	-272,50	-2,50	-5,00	7,50	-272,50	15,00	-9,53	-2,75	-0,16
0	600	10,00	-5,00	-5,00	-290,00	-10,00	7,50	2,50	-290,00	0,00	-6,35	-1,65	1,11
	720	12,50	-7,50	0,00	-317,50	-7,50	10,00	-2,50	-317,50	5,00	-3,18	-2,20	1,11
	360	10,00	-15,00	25,00	-555,00	-7,50	-15,00	22,50	-555,00	20,00	19,05	-2,75	-0,48
10	480	12,50	15,00	17,50	-572,50	10,00	45,00	-55,00	-572,50	45,00	-6,35	0,28	2,22
12	600	7,50	25,00	2,50	-590,00	7,50	-7,50	0,00	-590,00	35,00	-19,05	1,93	-0,95
	720	20,00	-22,50	20,00	-612,50	15,00	25,00	-40,00	-612,50	17,50	14,29	-4,68	0,64
	360	22,50	-30,00	5,00	-970,00	15,00	-32,50	17,50	-970,00	-2,50	7,94	Sezugssy M _{y,rel} [Nmm] -1,10 -1,65 -1,65 -2,48 -2,48 -2,75 -1,65 -2,20 -2,75 -1,65 -2,20 -2,75 0,28 1,93 -4,68 -5,78 -4,13 -2,75 -1,65 1,10 -4,68 -1,93 0,55	-3,02
16	480	22,50	-15,00	12,50	-997,50	0,00	-27,50	27,50	-997,50	20,00	3,18	-4,13	-1,75
10	600	12,50	-12,50	15,00	-995,00	5,00	-32,50	27,50	-995,00	15,00	9,53	-2,75	-2,38
	720	15,00	0,00	22,50	-995,00	-22,50	0,00	22,50	-995,00	37,50	4,76	-1,65	1,43
	360	15,00	25,00	27,50	-1502,50	22,50	-45,00	22,50	-1502,50	67,50	-7,94	My,rel N [Nmm] [I -1,10 -1,65 -1,65 -2,48 -2,48 -2,75 -1,65 -2,20 -2,75 0,28 1,93 -4,68 -5,78 -4,13 -2,75 1,65 -1,65 -1,65 1,93 -4,68 -5,78 -1,65 1,10 -4,68 -1,93 0,55	-4,29
20	480	10,00	-32,50	37,50	-1595,00	-2,50	2,50	0,00	-1595,00	15,00	38,10	-4,68	0,32
20	600	15,00	-2,50	40,00	-1562,50	-2,50	2,50	0,00	-1562,50	52,50	17,46	-1,93	0,32
	720	27,50	32,50	27,50	-1582,50	-55,00	-30,00	85,00	-1582,50	87,50	-20,64	0,55	1,59

Windkanalversuch Anstellwinkel $\alpha = 15^{\circ}$ Endergebnisse

Versuchsp	arameter	Kräfte und	Kräfte und Momente im aerodynamischen Bezugssystem										
v	n	F _x	Fy	Fz	M _x M _y		Mz						
[m/s]	[1/min]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]						
	360	-18,12	-67,61	7,50	-1,82	-0,65	0,48						
4	480	-17,17	-83,40	17,50	-8,09	0,46	0,95						
4	600	-11,39	-100,47	22,50	-5,03	-0,36	0,64						
	720	-25,58	-114,79	27,50	-11,37	0,49	0,64						
	360	-58,75	-248,25	5,00	-0,64	-2,39	0,16						
8	480	-63,28	-265,16	15,00	-9,91	-0,19	-0,16						
0	600	-72,64	-280,77	0,00	-6,56	0,05	1,11						
	720	-84,59	-306,03	5,00	-3,64	-1,30	1,11						
	360	-121,91	-541,91	20,00	17,69	-7,59	-0,48						
12	480	-201,30	-538,76	45,00	-6,06	1,91	2,22						
12	600	-152,70	-569,90	35,00	-17,90	6,79	-0,95						
	720	-197,16	-581,28	17,50	12,59	-8,21	0,64						
	360	-234,15	-941,48	-2,50	6,17	-7,63	-3,02						
40	480	-231,61	-970,63	20,00	2,00	-4,81	-1,75						
16	600	-230,96	-968,21	15,00	8,49	-5,12	-2,38						
	720	-235,79	-966,92	37,50	4,17	-2,83	1,43						
	360	-367,14	-1457,13	67,50	-7,38	3,12	-4,29						
20	480	-412,82	-1540,65	15,00	35,59	-14,38	0,32						
20	600	-404,40	-1509,26	52,50	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-6,38	0,32						
	720	-327,48	-1550,58	87,50	-19,79	5,87	1,59						

Windkanalversuch Kontrollmessung Anstellwinkel $\alpha = 15^{\circ}$ Messwerte

Versuch	sparame	ter	Messv	verte m	te mit Bumerang Messwerte ohne Bumerang ϑ_v					ϑ _{vor}	ϑ _{nach}					
v	q∞	n	A1	A2	A3	S1	W1	W2	A1	A2	A3	S1	W1	W2	Klammer	werte sind
[m/s]	[mmWS]	[1/min]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	[400N]	Bumera	ang [°C]
		360	24	-19	6	-667	568	582	24	-27	-3	-54	561	602	23,6 (23,9)	
20	24.07	480	28	-26	-6	-683	569	575	22	-29	1	-57	562	579		
20	24,97	600	26	-15	-2	-679	568	579	22	-26	0	-47	565	583		
		720	31	-12	-1	-699	564	573	27	-28	4	-51	555	585		23,9 (23,9)

Zwischenrechnungen

Versuchsparameter Korrigierte Messwerte k							Kräfte und Momente im relativen Bezugssystem						
v	n	A1	A2	A3	S	W1	W2	F _{x,rel}	$F_{y,rel}$	F _{z,rel}	M _{x,rel}	M _{y,rel}	M _{z,rel}
[m/s]	[1/min]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]
	360	0	20	22,5	-1532,5	17,5	-50	32,50	-1532,50	42,50	1,59	2,20	-4,29
20	480	15	7,5	-17,5	-1565	17,5	-10	-7,50	-1565,00	5,00	-25,40	-0,83	-1,75
20	600	10	27,5	-5	-1580	7,5	-10	2,50	-1580,00	32,50	-26,99	1,93	-1,11
	720	10	40	-12,5	-1620	22,5	-30	7,50	-1620,00	37,50	-39,69	3,30	-3,33

Windkanalversuch Kontrollmessung Anstellwinkel $\alpha = 15^{\circ}$ Endergebnisse

Versuchspa	arameter	Kräfte und Momente im aerodynamischen Bezugssystem										
V	n	F _x	Fy	Fz	M _x	My	Mz					
[m/s]	[1/min]	[mN]	[mN]	[mN]	[Nmm]	[Nmm]	[Nmm]					
	360	-365,25	-1488,69	42,50	2,10	1,71	-4,29					
20	480	-412,30	-1509,73	5,00	-24,75	5,78	-1,75					
20	600	-406,52	-1526,81	32,50	-25,57	8,84	-1,11					
	720	-412,04	-1566,74	37,50	-37,48	13,46	-3,33					

Messfehler

Versuchspa	arameter	Messfehler im Vergleich zur Messung α = 15°										
V	n	F _x	Fy	Fz	M _x	My	Mz					
[m/s]	[1/min]	[%]	[%]	[%]	[%]	[%]	[%]					
	360	0,52	-2,17	37,04	128,48	45,00	0,00					
20	480	0,13	2,01	66,67	169,53	140,18	650,00					
20	600	-0,52	-1,16	38,10	256,21	238,65	450,00					
	720	-25,82	-1,04	57,14	-89,38	-129,19	310,00					